Harsanyi Type Spaces and Final Coalgebras Constructed from Satisfied Theories
نویسندگان
چکیده
This paper connects coalgebra with a long discussion in the foundations of game theory on the modeling of type spaces. We argue that type spaces are coalgebras, that universal type spaces are final coalgebras, and that the modal logics already proposed in the economic theory literature are closely related to those in recent work in coalgebraic modal logic. In the other direction, the categories of interest in this work are usually measurable spaces or compact (Hausdorff) topological spaces. A coalgebraic version of the construction of the universal type space due to Heifetz and Samet [4] is generalized for some functors in those categories. Since the concrete categories of interest have not been explored so deeply in the coalgebra literature, we have some new results. We show that every functor on the category of measurable spaces built from constant functors, products, coproducts, and the probability measure space functor has a final coalgebra. Moreover, we construct this final coalgebra from the relevant version of coalgebraic modal logic. Specifically, we consider the set of theories of points in all coalgebras and endow this set with a measurable and coalgebra structure.
منابع مشابه
Computing Science Group Coalgebras, Chu Spaces, and Representations of Physical Systems
We revisit our earlier work on the representation of quantum systems as Chu spaces, and investigate the use of coalgebra as an alternative framework. On the one hand, coalgebras allow the dynamics of repeated measurement to be captured, and provide mathematical tools such as final coalgebras, bisimulation and coalgebraic logic. However, the standard coalgebraic framework does not accommodate co...
متن کاملDeduction Systems for Coalgebras Over Measurable Spaces
A theory of infinitary deduction systems is developed for the modal logic of coalgebras for measurable polynomial functors on the category of measurable spaces. These functors have been shown by Moss and Viglizzo to have final coalgebras that represent certain universal type spaces in game-theoretic economics. A notable feature of the deductive machinery is an infinitary Countable Additivity Ru...
متن کاملDualising Initial Algebras
Whilst the relationship between initial algebras and monads is well understood, the relationship between final coalgebras and comonads is less well explored. This paper shows that the problem is more subtle than might appear at first glance: final coalgebras can form monads just as easily as comonads, and, dually, initial algebras form both monads and comonads. In developing these theories we s...
متن کاملQuillen Spectral Sequences in Homology and Rational Homotopy of Cofibrations
We construct Quillen type spectral sequences in homology and rational homotopy for coobration sequences which are Eckmann-Hilton dual to analogous ones for bration sequences. These spectral sequences are constructed by direct ltrations of the Adams cobar construction. We also prove various collapsing theorems generalizing results of Clark and Smith in the case of a wedge of 1-connected nicely p...
متن کاملFractal Sets as Final Coalgebras Obtained by Completing an Initial Algebra
This paper is a contribution to the presentation of fractal sets in terms of final coalgebras. The first result on this topic was Freyd’s Theorem: the unit interval [0, 1] is the final coalgebra of a functor X 7→ X ⊕ X on the category of bipointed sets. Leinster [L] offers a sweeping generalization of this result. He is able to represent many of what would be intuitively called self-similar spa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. Notes Theor. Comput. Sci.
دوره 106 شماره
صفحات -
تاریخ انتشار 2004